About the benefits of a CO₂ transport and storage infrastructure in Europe

A coal industry perspective

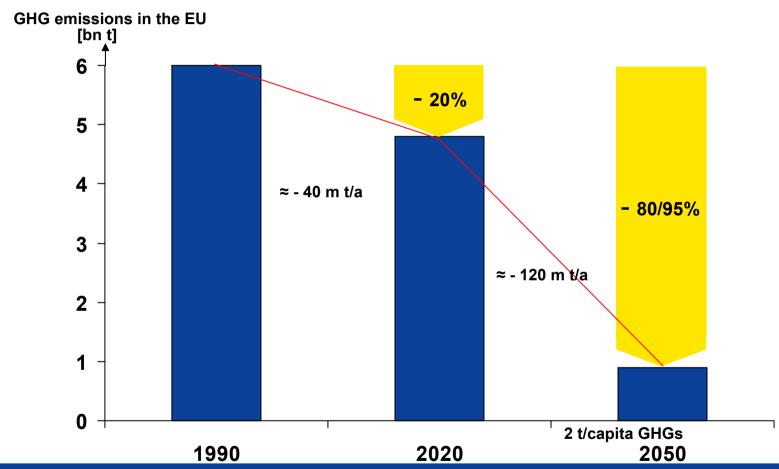
Dateiname: Rede Dr. Milojcic Draft

Fossil Fuel Forum Berlin 12./13. Oktober 2009

Stand: 29. September 2009

EU Council and Parliament resolutions on mitigation of climate change

By 2020:


20% renewables, 20% energy savings, 20% GHG reduction

By 2050:

- Limiting global temperature rise ≤ 2°C; Target value ≤ 450 ppm CO₂ in atmosphere
- Reduction of worldwide anthropogenic GHGs to 50% of 1990 level
- Fair burden-sharing, i.e. industrialized states minimize disproportionately high, i.e. 80 95% relative to 1990
- Fairness at ≈ 2 t GHGs per capita and year

Mitigation of climate change in the EU two stages – two speeds

For the EU, this means reducing GHGs from 5.8 bn t/a in 1990 to some 4.6 bn t in 2020 and some 1 bn t/a in 2050.

CO₂ reduction in period from 2020 to 2050

Annual reduction rate in GHGs on a scale of ≈ 120 m t/a can no longer be reached by

increasing efficiency, falling conversion losses, switching fuels

Instead, completely new approaches are needed

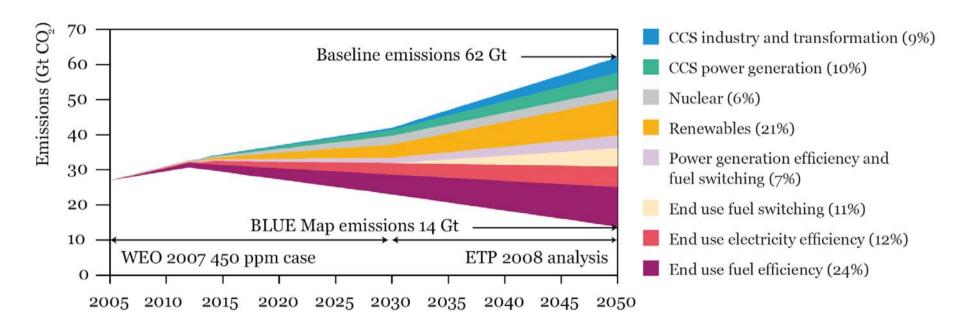
- Expansion of wind and photovoltaics must be shaped and designed together with the electricity-storage issue and a robust back-up generation system
- Zero-CO₂ final energy electricity for heating market
- new technologies must be launched, e.g.
 - > e-mobility, hydrogen?
 - ➤ CO₂ capture
 - solar-thermal power plants

Beyond 2020, innovation leaps are required, since the GHG reduction targets can no longer be achieved using today's technology. CO₂ sinks needed.

CO₂ infrastructure as location factor

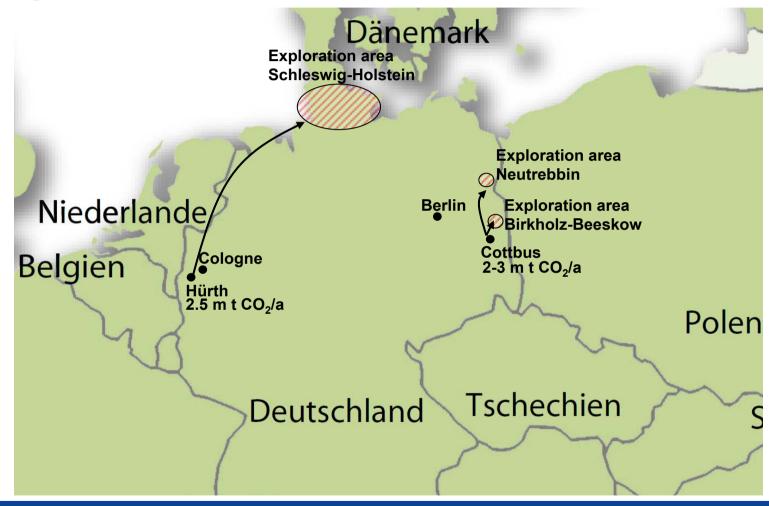
- The utilization of oil, gas and coal, increasingly after 2020 and as things stand today only possible at all in 2050, with carbon capture.
- Security of supply in the electricity sector and industrial production are linked with CCS technology in the medium term already.
- A CO₂ transport and storage infrastructure will be needed after 2015/2020.

The need for carbon capture and a CO₂ transport and storage infrastructure follows from the climate targets and the fact that Central Europe is to remain an industrial region.



Obstacles and possible approaches for a demonstration of CCS

- acceptance necessity is not recognizable
 - ⇒ Decision on national and regional level, CCS one element of solution portfolio from 2020 onwards
- complexity of process chain capture-transport-storage
 - ⇒ Separation of tasks where it makes sense, dialogue with industry & power generators
- First Mover cannot capitalize on development expenses free-riders profit
 - ⇒ Public support for demonstration
- Financing the demonstration of capture and elements of a CO₂infrastructure
 - ⇒ transparent process of granting funds for certain methods, e.g. Oxyfuel, IGCC und post-combustion in power generation, projects in chemical industry/refineries, setup of infrastructure


CCS important contribution to CO₂-mitigation

Contribution to 50% emissions reduction by 2050 (BLUE Map Scenario)

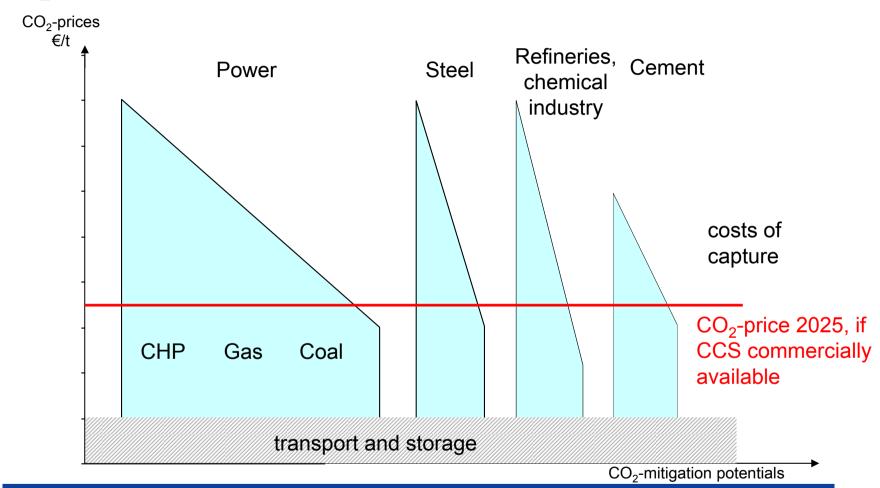
Projects in Jänschwalde and Hürth to demonstrate the functioning of the CCS chain: power-plant – transport – storage

In the demonstration projects, regional solutions are possible, but limits are discernible.

Major CO₂ sources in Central Europe

	Number of operations > 10 m t/a	Number of operations 10 – 3 m t/a	Number of operations 3 – 0.35 m t/a	Total CO ₂ emissions of selected operations, in m t/a
Netherlands	0	10	33	86
Belgium	0	5	33	51
Germany	9	23	153	434
Poland	2	10	56	162
Czech Rep.	0	8	33	74
Total	11	56	308	807

Source: EPER 4/2009 - Data for 2004


Reducing complexity

- CCS-Demonstration as integrated technological process proves to be difficult; lack of concepts for industrial application
- Separation of tasks in industrial-scale application reasonable:
 - Capture conducted by operator of facility:
 - Technology exists, industrial application needs incentives: three processes available in power generation
 - Setup and operation of CO₂ transport- and storage-infrastructure by specialized companies:
 - CO₂-transport tested, acceptance and regulation needed
 - CO₂-storage needs balance of interests between regions and utilization competition

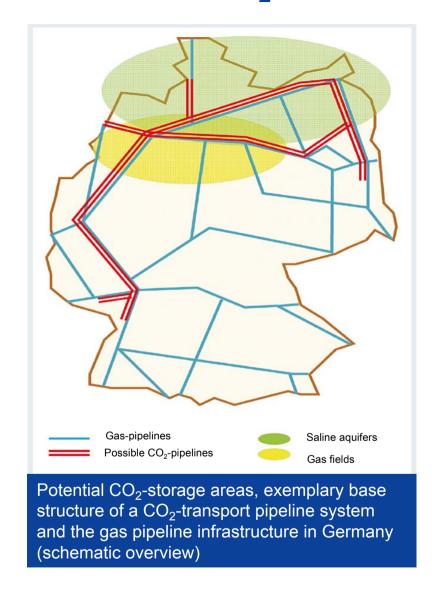
Government action guarantees non-discriminatory access to a CO₂ – infrastructure and ensures sufficiently large capacities in the future

CO₂-infrastructure provides planning reliability as CO₂-prices become calculable (qualitative illustration)

Decision-makers know their costs of capture and are able to estimate the operating expense for transport und storage, if a CO_2 -transport-storage-infrastructure is available. With the exhaustion of the cheapest mitigation potentials CO_2 -prices rise slowly over time.

Why does the demonstration of CCS need public financial support?

- CCS is an innovative technology in competition with established technologies whose development is publicly supported, e.g. large utilities invest in wind power generation
- As electricity is a basic commodity energy companies have little incentive to use unproven and very costly technology such as CCS
- Engineering in energy generation is particularly vulnerable to free-riding as lessons learnt can be used by all firms


Due to these market failures investor activity is currently focused on **projects** which are **rather small**.

They will **help** development of CCS but **not at the pace necessary** for commercial deployment in 2020.

A large number of demonstration projects is needed (EU/ G8 aims) but their development is not market driven

Build up of a CO₂-infrastructure

Benefits of CCS-technology

Security of supply and balanced energy mix:

- with CCS coal remains reliable, affordable and domestic contribution to a stable energy supply
- even larger dependence on imported, expensive natural gas can be avoided with use of coal; in the long run gas power stations need CCS as well
- inexpensive back-up system for Renewables

Path towards a decarbonized industry:

- in the near future CCS indispensable for important industries (cement, steel, petroleum processing, chemical industry)

Export potential:

- Leadership in CCS-technology can be used to realize export potential (e.g. in China, India)

